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ABSTRACT

Brain surface conformal mapping has been studied inten-

sively. In this paper, we propose a method that computes a

conformal mapping from a multiply connected mesh to the

so-called slit domain, which consists of a canonical rectangle

or disk in which 3D curved landmarks on the original surfaces

are mapped to concentric or parallel lines in the slit domain.

After cutting along some landmark curve features on surface

models of the cerebral cortex, we obtain multiple connected

domains. By computing exact harmonic one-forms, closed

harmonic one-forms, and holomorphic one-forms, we are

able to build a circular slit mapping that conformally maps

the surface to an annulus with some concentric arcs and a

rectangle with some slits. The whole algorithm is based on

solving linear systems so it is very stable. In the slit domain

parameterization results, the feature curves are either mapped

to straight lines or a concentric arcs. This representation is

convenient for anatomical visualization, and may assist sta-

tistical comparisons of anatomy, surface-based registration

and signal processing. Preliminary experimental results pa-

rameterizing various brain anatomical surfaces are presented.

Index Terms— Biomedical Imaging, Brain Mapping,

Surface Parameterization, Slit Mapping

1. INTRODUCTION

Parameterization of anatomical surfaces in brain imaging

is valuable to help analyze anatomical shape and statisti-

cally combine or compare 3D anatomical models across

subjects. Conformal parameterization can provide a one-to-

one, onto, and angle-preserving map from a general manifold

to a canonical space, such as a sphere, disk or other subre-

gion of the plane. In this mapping, the elements of the first

fundamental form remain unchanged, except for a scaling
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factor. The mapping preserves similarities in small regions;

it can also be used to simplify covariant derivative formulas

on a general manifold, which is useful for solving variational

problems on surfaces, such as signal denoising or compu-

tation of correspondence vector fields that match different

surfaces.

In this paper, we introduce a new method to conformally

map a multiply connected domain to an annulus with multi-

ple concentric arcs (called the circular slit map) or to a rect-

angle with multiple straight lines (the parallel slit map). It

is a global conformal parameterization method without seg-

mentation. First, it computes exact harmonic one-forms and

closed harmonic one-forms. Secondly, it computes all bases

of holomorphic one-forms. Given appropriate boundary con-

ditions, it can compute a unique circular slit map up to a ro-

tation around the center. The slit mapping computes the in-

trinsic structure of the given surface, which can be reflected

in the shape of the target domain.

This work continues our group’s previous research on

brain surface conformal parameterization. The new work has

the same motivation, i.e., to match brain landmarks along

boundaries by global conformal parameterization, but it over-

comes the singularity problem in the holomorphic flow seg-

mentation algorithm [1]. The method is also more stable than

the highly non-linear solution of the Ricci flow method [2].

1.1. Related Work

Brain surface parameterization has been studied intensively.

Schwartz et al. [3], and Timsari and Leahy [4] computed

quasi-isometric flat maps of the cerebral cortex. Drury et

al. [5] presented a multiresolution method for flattening the

cerebral cortex. Hurdal and Stephenson [6] reported a dis-

crete mapping approach that uses circle packings to produce

“flattened” images of cortical surfaces on the sphere, the Eu-

clidean plane, and the hyperbolic plane. The maps obtained

are quasi-conformal approximations of classical conformal

maps. Haker et al. [7] implemented a finite element ap-

proximation for parameterizing brain surfaces via conformal

mappings. They select a point on the cortex to map to the
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north pole of the Riemann sphere and conformally map the

rest of the cortical surface to the complex plane by stere-

ographic projection of the Riemann sphere to the complex

plane. Gu et al. [8] proposed a method to find a unique con-

formal mapping between any two genus zero manifolds by

minimizing the harmonic energy of the map. They demon-

strate this method by conformally mapping a cortical surface

to a sphere. Ju et al. [9] presented a least squares confor-

mal mapping method for cortical surface flattening. Joshi

et al. [10] proposed a scheme to parameterize the surface

of the cerebral cortex by minimizing an energy functional

in the pth norm. Wang et al. [1] have used holomorphic

1-forms to parameterize anatomical surfaces with complex

(possibly branching) topology. Wang et al. [2] introduced a

brain surface conformal mapping algorithm based on alge-

braic functions. By solving the Yamabe equation with the

Ricci flow method, it can conformally map a brain surface to

a multi-hole disk. Recently, Ju et al. [11] reported the results

of a quantitative comparison of FreeSurfer [12], CirclePack,

and least squares conformal mapping (LSCM) with respect to

geometric distortion and computational speed.

2. THEORETICAL BACKGROUND

Suppose S is a surface embedded in R
3, with induced Eu-

clidean metric g. S is covered by an atlas {(Uα, φα)}. Sup-

pose (xα, yα) is the local parameter on the chart (Uα, φα).
We say (xα, yα) is isothermal, if the metric has the represen-

tation g = e2λ(xα,yα)(dx2
α + dy2

α).
The Laplace-Beltrami operator is defined as Δg =
1

e2λ(xα,yα) ( ∂2

∂x2
α

+ ∂2

∂y2
α
). A function f : S → R is harmonic,

if Δgf ≡ 0.

Suppose ω is a differential one-form with the represen-

tation fαdxα + gαdyα in the local parameters (xα, yα), and

fβdxβ + gβdyβ in the local parameters (xβ , yβ). Then(
∂xα

∂xβ

∂yα

∂xβ
∂xα

∂yβ

∂yα

∂yβ

)(
fα

gα

)
=

(
fβ

gβ

)
.

ω is a closed one-form, if on each chart (xα, yα),
∂f
∂yα

− ∂g
∂xα

= 0. ω is an exact one-form, if it equals the

gradient of some function. An exact one-form is also a closed

one-form. If a closed one-form ω satisfies ∂f
∂xα

+ ∂g
∂yα

= 0,

then ω is a harmonic one-form. The gradient of a harmonic

function is an exact harmonic one-form.

The so-called Hodge star operator turns a one-form ω to

its conjugate ∗ω, ∗ω = −gαdxα + fαdyα.

A holomorphic one-form is a complex differential form

ω +
√−1∗ω, where ω is a harmonic one-form.

Suppose S is an open surface with n boundaries γ1, · · · , γn.

We can uniquely find a holomorphic one-form ω, such that

∫
γk

ω =

⎧⎨
⎩

2π k = 1
−2π k = 2
0 otherwise

(1)

Circular Slit Mapping Fix a point p0 on the surface, for any

point p ∈ S, let γ be an arbitrary path connection p0 and p,

then the circular slit mapping is defined as φ(p) = e
R

γ
ω .

Theorem 2.1 The function φ effects a one-to-one confor-
mal mapping of M onto the annulus 1 < |z| < eλ0 minus
n − 2 concentric arcs situated on the circles |z| = eλi , i =
1, 2, · · · , n − 2.

The proof of the above theorem on slit mapping can be found

in [13]. For a given choice of the inner and outer circle, the

circular slit mapping is uniquely determined up to a rotation

around the center. The parallel slit mapping can be defined in

a similar way.

Parallel Slit Mapping Let S̄ be the universal covering space

of the surface S, π : S̄ → S be the projection and ω̄ = π∗ω
be the pull back of ω. Fix a point p̄0 on S̄, for any point

p ∈ S̄, let γ̄ be an arbitrary path connection p̄0 and p̄, then the

parallel slit mapping is defined as φ̄(p̄) =
∫

γ̄
ω̄.

3. ALGORITHM PIPELINE

Suppose the input mesh has n + 1 boundaries, ∂M = γ0 −
γ1 − · · · − γn. Without loss of generality, we map γ0 to the

outer circle of the circular slit domain, γ1 to the inner circle,

and all the others to the concentric slits.

The algorithm pipeline is as follows :

1 Compute the basis for all exact harmonic one-forms;

2. Compute the basis for all closed harmonic one-forms;

3. Compute the basis for all holomorphic one-forms;

4. Construct the slit mapping.

3.1. Basis for Exact Harmonic One-forms

The first step of the algorithm is to compute the basis for

exact harmonic one-forms. Let γk be an inner bound-

ary, we compute a harmonic function fk : S → R by

solving the following Dirichlet problem on the mesh M :{
Δfk ≡ 0
fk|γj = δkj

, where δkj is the Kronecker function, Δ is

the discrete Laplace-Beltrami operator using the co-tangent

formula proposed in [14].

The exact harmonic one-form ηk can be computed as

the gradient of the harmonic function fk, ηk = dfk, and

{η1, η2, · · · , ηn} form the basis for the exact harmonic one-

forms .

3.2. Basis for Harmonic One-forms

After getting the exact harmonic one-forms, we will compute

the closed one-form basis. Let γk (k > 0) be an inner bound-

ary. Compute a path from γk to γ0, denote it as ζk. ζk cut the

mesh open to Mk, while ζk itself is split into two boundary

segments ζ+
k and ζ−k in Mk. Define a function gk : Mk → R
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by solving a Dirichlet problem,

⎧⎨
⎩

Δgk ≡ 0
gk|ζ+

k
= 1

gk|ζ−
k

= 0.
. Compute

the gradient of gk and let τk = dgk, then map τk back to

M , where τk becomes a closed one-form. Then we need to

find a function hk : M → R, by solving the following linear

system: Δ(τk + dhk) ≡ 0.

Updating τk to τk + dhk, we now have {τ1, τ2, . . . , τn}
as a basis set for all the closed but non-exact harmonic one-

forms.

With both the exact harmonic one-form basis and the

closed non-exact harmonic one-form basis computed, we can

construct the harmonic one-form basis by taking the union of

them: {η1, η2, · · · , ηn, τ1, τ2, · · · , τn}.

3.3. Basis for Holomorphic One-forms

In Step 1 we computed the basis for exact harmonic one-

forms {η1, · · · , ηn}. Now we compute their conjugate one-

forms {∗η1, · · · , ∗ηn}, so that we can combine all of them

together into a holomorphic one-form basis set.

First of all, for ηk we compute an initial approximation η′
k

by a brute-force method using the Hodge star. That is, rotating

ηk by 90◦ about the surface normal to obtain η′
k. In practice

such an initial approximation is usually not accurate enough.

In order to improve the accuracy, we employ a technique uti-

lizing the harmonic one-form basis we just computed. From

the fact the ηk is harmonic, we can conclude that its conju-

gate ∗ηk should also be harmonic. Therefore, ∗ηk can be rep-

resented as a linear combination of the base harmonic one-

forms: ∗ηk =
∑n

i=1 aiηi +
∑n

i=1 biτi.

Using the wedge product ∧, we can construct the follow-

ing linear system,
∫

M
∗ηk ∧ ηi =

∫
M

η′
k ∧ ηi,

∫
M

∗ηk ∧ τj =∫
M

η′
k ∧ τj .

We solve this linear system to obtain the coefficients ai

and bi (i = 1, 2, · · · , n) for the conjugate one-form ∗ηk. Pair-

ing each base exact harmonic one-form in the basis with its

conjugate, we get a basis set for the holomorphic one-form

group on M : {η1 +
√−1∗η1, · · · , ηn +

√−1∗ηn}

3.4. Construct Slit Mapping

After computing the holomorphic one-form basis, we need

to find a special holomorphic one-form ω =
∑n

i=1 λi(ηi +√−1∗ηi), such that the imaginary part of its integral satisfies

Im

(∫
γk

ω

)
=

{ −2π k = 1
0 k > 1

To get the coefficients λi, we solve the following linear

system for λi, i = 1, · · · , n:⎛
⎜⎜⎜⎝

α11 α12 · · · α1n

α21 α22 · · · α2n

...
...

. . .
...

αn1 αn2 · · · αnn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

λ1

λ2

...

λn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−2π
0
...

0

⎞
⎟⎟⎟⎠

where αkj =
∫

γj

∗ηk.

It can be proven that this linear system has a unique so-

lution, which reflects the fact that γ1 is mapped to the inner

circle of the circular slit domain. Further, the system implies

the following equation λ1α01 + λ2α02 + · · · + λnα0n = 2π,

which means that γ0 is mapped to the outer circle in the cir-

cular slit domain.

After computing the desired holomorphic one-form ω, we

are ready to generate the circular slit mapping. What we need

to compute is a complex-valued function φ : M → C by

integrating ω and taking the exponential map. Choosing a

base vertex v0 arbitrarily, and for each vertex v ∈ M choosing

the shortest path γ from v0 to v, we can compute the map as

the following: φ(v) = e
R

γ
ω .

Based on the circular slit map φ we just computed, we can

compute a parallel slit map τ : M → C: τ(v) = lnφ(v).

4. EXPERIMENTAL RESULTS

We applied our algorithms to parameterize various anatom-

ical surfaces extracted from 3D MRI scans of the brain. In

this paper, the segmentations are regarded as given, and re-

sult from automated and manual segmentations detailed in our

prior work. In Figure 1, Subfigure 1 shows an example of our

computation results. For the cortical surface of the brain, we

cut it open along six major landmarks. (a) and (b) show the

brain surface from two different views. With our slit mapping

algorithm, we can conformally map it to a rectangular domain

with four slits (c) and an annulus with four concentric arcs (d).

(d) and (e) demonstrate the conformal texture mapping as the

pull-back of the coordinates induced by the circular slit map

of (f).

We also tested our algorithm on a left hippocampal sur-

face, a key structure in the medial temporal lobe of the brain,

for which parametric shape models are commonly developed

for tracking shape differences and longitudinal atrophy in dis-

ease. The results are shown in the first row of Subfigure 2 in

Figure 1. We leave two holes on the front and back of the hip-

pocampal surface, representing its anterior junction with the

amygdala and its posterior limit as it turns into the white mat-

ter of the fornix. We also randomly selected two curves lying

in regions of high curvature, which are of interest for surface

registration research (these could also be boundaries of the

CA fields, or other architectonic boundaries, if high-field im-

ages are available). The parallel slit map result is shown with

appropriate landmark curves labeled. We also applied our al-

gorithm to lateral ventricular surface (second row in Subfigure

2 of Figure 1). We introduced three cuts. The motivation for

these cuts are based on the topology of the lateral ventricles,

in which several horns are joined together at the “atrium” or

“trigone”. In the parallel slit map result, two boundaries are

mapped to left and right boundaries, respectively. The rectan-

gle’s lengthy aspect ratio reflects its intrinsically long horn-

like shape.
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In Figure 1, Subfigure 3 demonstrates various parallel slit

map results given different boundary conditions. As shown in

Subfigure 3, four landmarks were cut open. After the cut, the

surface turns into an open boundary genus three surface. For

the Equation 1, we selected two different pairs of landmarks

as the exterior and inner boundaries by putting the integration

of different γk as 2π and −2π. The second column shows the

parameterization results when we use landmark a and d as the

exterior and inner circular boundaries, respectively. The third

column shows the parameterization results when we select the

other pair of landmark curves as the boundary conditions.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a brain surface conformal param-

eterization method based on the slit map, which transfers cor-

tical geometry and any embedded landmarks into a canon-

ical domain, with conformal coordinates. With fixed bound-

ary conditions, our algorithm can compute unique circular slit

maps and parallel slit maps, where the positions and lengths

of the slits are determined by the conformal equivalence class

of the surface. We tested our algorithm on hippocampal, lat-

eral ventricular and cerebral cortical surfaces. Compared with

our previous work [1, 2], our new work does not have any sin-

gularities and more stable because only linear systems are in-

volved. Another advantage is that mappings between surfaces

could be readily set up via 2D matching in these domains, us-

ing the conformal parameterization to conveniently discretize

differential operators. Our future work will include empiri-

cal application of the slit map algorithm to biomedical appli-

cations in computational anatomy, including the detection of

population differences and the tracking of brain change over

time.
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Fig. 1. In Subfigure 1: (a) and (b) show the cortical surface

with 6 landmarks cut open, including an open boundary at the

corpus callosum (in green); (c) is the parallel slit map result;

(f) is the circular slit map result; (d) and (e) show the confor-

mal texture parameterized by the circular slit map (f). Sub-

figure 2 illustrates the parallel slit mapping results for a hip-

pocampal surface and for a surface of the left lateral ventricle.

5respectively. In Subfigure 3, conformal parameterization re-

sults are shown with different boundary conditions. The first

column shows a cerebral cortical surface with 4 landmarks in-

troduced as cuts. The second column shows the circular slit

map and parallel slit map results when a pair of landmarks

are selected as boundaries The third column shows results the

other pair of landmarks are selected as boundaries.
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